ULTRA-LOW-VOLTAGE (ULV) IC DESIGN: DESIGNING FOR VDD BELOW kT/q

Outline

- 1 The MOSFET : DC and small signal models
- **2 ULV CMOS logic circuits**
- **3 ULV rectifiers**
- **4 ULV oscillators**

Self-powered applications

Low data rate, low duty cycle, ultra-low power

Ambient DC power supply voltages are ultra low

The trend toward low supply voltages

- Q1-Are there lower bounds on the supply voltages to power electronic circuits?
- Q2-What are the best technologies for ultra low voltage circuits?

ULTRA-LOW-VOLTAGE (ULV) IC DESIGN: DESIGNING FOR VDD BELOW kT/q

Chapter 1 The MOSFET : DC and small signal models

MOSFET capacitive model in inversion

 $Q'_{G}(Q'_{S})$ - gate (semiconductor) charge/ unit area

 $Q'_{I}(Q'_{B})$ - inversion (depletion) charge/unit area

 $C'_{i}(C'_{b})$ - inversion (depletion) capacitance /unit area

Main approximation for compact MOS modeling: the charge-sheet model

Minority carriers occupy a zero-thickness layer at the Si-SiO₂ $\phi = \phi_s$ interface, where

$Q'_I \propto$	e^{ϕ_s/ϕ_t}
----------------	---------------------

$$C'_{i} = -\frac{dQ'_{I}}{d\phi_{s}} = -\frac{Q'_{I}}{\phi_{t}}$$

Charge-sheet + depletion approximation for the bulk charge gives

$$Q'_{B} \cong -qN_{A}x_{d} = -\sqrt{2q\mathcal{E}_{s}N_{A}\phi_{s}}$$
$$Q'_{B} \cong \frac{\sqrt{2q\mathcal{E}_{s}N_{A}}}{\sqrt{2q\mathcal{E}_{s}N_{A}}} = \frac{\gamma C'_{ox}}{\sqrt{2q\mathcal{E}_{s}N_{A}}}$$

 $\Delta \sqrt{\psi_s}$

 $2\sqrt{\psi_s}$

$$\gamma = \sqrt{2q\varepsilon_s N_A} / C'_{ox}$$

is the body-effect coefficient

Surface potential for negligible inversion charge : ϕ_{sa}

Threshold voltage $V_G = V_{T0} \leftrightarrow \phi_s \cong 2\phi_F$ $\frac{\Delta\phi_{sa}}{\Delta V_G} \cong \frac{C'_{ox}}{C' + C'_{ox}} = \frac{1}{n}$

$$\phi_{sa} \cong 2\phi_F + \frac{V_G - V_{T0}}{n} = 2\phi_F + V_P$$
 V_P is the pinch-off voltage

Unified Charge Control Model-1

Unified Charge Control Model (UCCM) -2

$$dQ_I'\left(\frac{1}{nC_{ox}'} - \frac{\phi_t}{Q_I'}\right) = dV_0$$

Integrating from an arbitrary channel potential V_C to a reference potential V_P yields UCCM

$$n = 1 + \frac{C_b}{C'_{ox}} = n(V_G)$$
$$Q'_{IP} = Q'_I|_{V_C = V_P}$$

$$V_P - V_C = \phi_t \left[\frac{Q'_{IP} - Q'_I}{nC'_{ox}\phi_t} + \ln\left(\frac{Q'_I}{Q'_{IP}}\right) \right]$$

Choosing the thermal charge as the pinch-off charge

$$Q'_{IP} = -nC'_{ox}\phi_{i}$$

The normalized inversion (areal) charge density is

$$\frac{Q'_{I}}{Q'_{IP}} = q'_{I}$$

Normalized UCCM

$$V_P - V_C = \phi_t (q'_I - 1 + \ln q'_I)$$

Charge control current model

Integrating along the channel yields

$$I_{D} = \frac{\mu_{n}W}{L} \left[\frac{Q_{IS}'^{2} - Q_{ID}'^{2}}{2nC_{ox}'} - \phi_{t} \left(Q_{IS}' - Q_{ID}' \right) \right]$$

Forward and reverse currents

symmetry of the rectangular MOSFET

$$I_{D} = I_{F} - I_{R} = I(V_{G}, V_{S}) - I(V_{G}, V_{D}) \qquad I_{F(R)} = \frac{W}{L} \mu_{n} \left[\frac{Q_{IS(D)}^{\prime 2}}{2nC_{ox}^{\prime}} - \phi_{t}Q_{IS(D)}^{\prime} \right]$$

Normalization (areal) charge

$$I_D = -\frac{\mu_n W}{nC'_{ox}} (Q'_I - \phi_t nC'_{ox}) \frac{dQ'_I}{dy}$$

 $Q_{I} = -nC_{ox}'\phi_{t} \square Drift = Diffusion$ Normalization charge

Drift Diffu

$$q'_{IS(D)} = Q'_{IS(D)} / \left(-nC'_{ox}\phi_t\right)$$

$$I_D = I_F - I_R = I_S \left[i_f - i_r \right]$$

Normalized unified charge control model $V_P - V_C = \phi_t \left(q'_I - 1 + \ln q'_I \right)$

$$i_{f(r)} = I_{F(R)} / I_{S} = (1 + q'_{IS(D)})^{2} - 1$$

$$I_{s} = \mu C_{ox}' n \frac{\phi_{t}^{2}}{2} \frac{W}{L} = I_{sQ} \frac{W}{L}$$

I_S and *I_{SQ}* are the normalization (specific) current and the "sheet" normalization current

Normalized charge-based MOSFET model

$$u_P - u_{S(D)} = \frac{V_P - V_{S(D)}}{\phi_t} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)$$

Inversion charge per unit area q'_{I}

The I-V relationship

Weak inversion model

Transconductances - 1

Transconductances - 2

$$g_{ms(d)} = \frac{2I_s}{\phi_t} \left(\sqrt{1 + i_{f(r)}} - 1 \right) = \frac{W}{L} \mu n C'_{ox} \phi_t \left(\sqrt{1 + i_{f(r)}} - 1 \right)$$

$$g_m = \frac{g_{ms} - g_{md}}{n} \qquad \qquad \frac{g_m}{I_D} = \frac{2}{n\phi_t \left(\sqrt{1 + i_f} + \sqrt{1 + i_r}\right)}$$

For $V_{DS}/\phi_t <<1$ we have $i_f \cong i_r$

In saturation

$$\frac{g_m}{I_D} \cong \frac{1}{n\phi_t \sqrt{1+i_f}}$$

$$\frac{g_m}{I_D} = \frac{2}{n\phi_t \left(\sqrt{1+i_f} + 1\right)}$$

MOSFET: low-frequency small-signal model in weak inversion

$$g_{ms} = g_m + g_{mb} + g_{md}$$
ICECS 2014

19

Low-voltage operation of the commonsource amplifier

Low–voltage operation of the (C)MOS inverter

Low-voltage operation of the commongate amplifier

The common-gate amplifier provides a voltage gain of greater than unity for $V_{DS}>0$. \rightarrow Very useful property for lowering the supply voltage limit for the operation of oscillators (later).

Colpitts oscillator

Zero-VT MOSFETs

V_{in}(

 $I_D \ge V_{DS} (V_S = V_B)$ characteristics for a zero-VT transistor with W/L=2500µm/420nm. For V_{GS} = 0 V and V_{DS} = 25 mV the values of the common-gate and common-source gains are 1.56 and 0.53, respectively.

ULTRA-LOW-VOLTAGE (ULV) IC DESIGN: DESIGNING FOR VDD BELOW kT/q

> Chapter 2 Ultra-Low-Voltage (ULV) CMOS logic circuits

THE CMOS INVERTER *Static Analysis in weak inversion 1*

$$I_{DN(P)} = I_{ON(P)} \cdot e^{\frac{V_{GB(BG)} - |V_{TN(P)}| - n_N \cdot V_{SB(BS)}}{n_{N(P)} \cdot \phi_t}} \cdot \left(1 - e^{-\frac{V_{DS(SD)}}{\phi_t}}\right)$$

The strength or current capability of the transistor is given by

$$I_{N(P)} = I_{ON(P)} \cdot e^{\frac{-|V_{TN(P)}|}{n_{N(P)} \cdot \phi_{t}}}$$

For the sake of simplicity let $n_N = n_P = n$. The static transfer function of the inverter is obtained from

$$I_{DN} = I_{DI}$$

$$I_{ON} \cdot e^{\frac{V_I - V_{TN}}{n \cdot \phi_t}} \cdot \left(1 - e^{-\frac{V_O}{\phi_t}}\right) = I_{OP} \cdot e^{\frac{V_{DD} - V_I - |V_{TP}|}{n \cdot \phi_t}} \cdot \left(1 - e^{-\frac{V_{DD} - V_O}{\phi_t}}\right)$$

THE CMOS INVERTER *Static Analysis in weak inversion 2*

$$V_{I} = \frac{V_{DD}}{2} + \frac{V_{TN} - |V_{TP}|}{2} + \frac{n \cdot \phi_{t}}{2} \cdot \ln\left(\frac{I_{OP}}{I_{ON}}\right) + \frac{n \cdot \phi_{t}}{2} \cdot \ln\left(\frac{1 - e^{-\frac{V_{DD} - V_{O}}{\phi_{t}}}}{1 - e^{-\frac{V_{O}}{\phi_{t}}}}\right)$$

In the ideal case of NMOS and PMOS transistors with the same strength, i.e. $I_{ON}=I_{OP}$ and $V_{TN}=|V_{TP}|$, the VTC reduces to

$$V_{I} = \frac{V_{DD}}{2} + \frac{n \cdot \phi_{t}}{2} \cdot \ln \left(\frac{1 - e^{-\frac{V_{DD} - V_{O}}{\phi_{t}}}}{1 - e^{-\frac{V_{O}}{\phi_{t}}}} \right)$$

$$I_{SC} = \sqrt{I_{ON} \cdot I_{OP}} \cdot e^{\frac{V_{DD} - V_{TN} - |V_{TP}|}{2 \cdot n \cdot \phi_t}} \cdot \sqrt{\left(1 - e^{-\frac{V_O}{\phi_t}}\right) \cdot \left(1 - e^{-\frac{V_{DD} - V_O}{\phi_t}}\right)}$$

THE CMOS INVERTER *Static Analysis in weak inversion 3*

Inverter voltage and current transfer characteristics.

SCHMITT TRIGGER ANALYSIS

- 2 internal nodes (V_X and V_Y)
- Feedback transistors controlled by the output
- Hysteresis for VDD > 80mV
- No hysteresis is desired for VDD minimization
- For symmetric operation, corresponding NMOS and PMOS MOSFETs have the same current capability

ST ANALYSIS – DC TRANSFER 1

MOSFET current in weak inversion:

ST ANALYSIS – DC TRANSFER 2

30

ST OPTIMIZATION 1

Series transistor: 11/10 Rearranging the AC gain equation for 11/10

Bilinear function with negative pole

Practical values of I1/I0 range from 0.01 to 0.1, with only slight penalty in terms of the gain.

ST OPTIMIZATION 2

Feedback transistors Rearranging the AC gain equation for I_2/I_0

$$\frac{|V_o|}{|V_i|}_{|V_o=V_I=\frac{V_{DD}}{2}} = -\frac{\left(\frac{I_2}{I_0}\right)^2 A_2 + \left(\frac{I_2}{I_0}\right) B_2 + C_2}{\left(\frac{I_2}{I_0}\right)^2 D_2 + \left(\frac{I_2}{I_0}\right) E_2 + F_2}$$

$$\frac{I_2}{I_0}\Big|_{OPTIMUM} = \frac{\sqrt{1 + e^{\frac{V_{DD}}{2\phi_t}} - e^{-\frac{V_{DD}}{2\phi_t}}}}{1 + e^{-\frac{V_{DD}}{2\phi_t}}} - 1$$

ST x CMOS INVERTER 1

73 is the best number !

Schmitt Trigger inverter Substituting the optimum values of I_1/I_0 and I_2/I_0 , the ST minimum operating voltage can be calculated:

$$V_{DD\min} = 2\phi_t \ln\left(\frac{1}{\sqrt{73}-8}\right) = 31.5 \text{mV} \text{ at } 300 \text{K}$$

$$\frac{I_1}{I_0}\Big|_{OPTIMUM} = 0 \qquad \frac{I_2}{I_0}\Big|_{OPTIMUM} = 0.333$$

ST structures are capable of operating at lower supply voltages than the standard static logic!!!!

ST x CMOS INVERTER 2

34

ULTRA-LOW-VOLTAGE (ULV) IC DESIGN: DESIGNING FOR VDD BELOW kT/q

Chapter 3 Ultra-Low-Voltage (ULV) rectifiers

MOTIVATION

Wirelessly powered sensors

Ultra-low-voltage diode circuits

Dickson analysis of voltage multipliers: constant threshold voltage diode model, but it is not appropriate for low voltage operation

 $V_L = V_P - V_{ON}$

How to substitute the constant 'diode voltage drop' model? Use the i-v characteristic of the diode and the load current

$$I_D = I_S[e^{\frac{V_D}{n\phi_t}} - 1] \qquad \qquad \phi_t = \frac{kT}{q} \\ n \sim 1 \text{ to } 1.5$$

Voltage rectifier with pure capacitive load - 1

38

Voltage rectifier with pure capacitive load - 2

$$\frac{V_o}{n\phi_t} = \ln\left[\cosh\left(V_P / n\phi_t\right)\right]$$

Power Detector

$$V_P \ll n\phi_t \quad \rightarrow \quad \frac{V_o}{n\phi_t} \cong \frac{1}{2} \left(\frac{V_P}{n\phi_t}\right)^2$$

Application: microwave power detection

R. G. Meyer, "Low-power monolithic RF peak detector analysis," IEEE J. Solid-State Circuits, vol. 30, no. 1, pp. 65–67, Jan. 1995.

Voltage rectifier with DC load - 1

Output voltage ripple

$$I_{C} = \frac{dQ_{C}}{dt} = C \frac{dV_{C}}{dt} \cong I_{L} + I_{S}$$

$$\int_{T/2}^{0} dV_{C} = \Delta V \cong \frac{I_{L} + I_{S}}{C} \frac{T}{2} = \frac{I_{L} + I_{S}}{2fC}$$

Voltage rectifier with DC load - 2

Steady-state analysis

 $\frac{I_S}{T} \left| \int_{-T/2}^{0} \left(e^{\left(\frac{-V_P - V_o}{n\phi_t}\right)} - 1 \right) dt + \int_{0}^{T/2} \left(e^{\left(\frac{V_P - V_o}{n\phi_t}\right)} - 1 \right) dt \right| = I_L$

Waveforms for $V_P >> n\phi_t$

Assumption: very low ripple $\rightarrow V_o \cong$ constant

$$\frac{V_o}{n\phi_t} = \ln\left[\frac{\cosh\left(V_P / n\phi_t\right)}{1 + I_L / I_S}\right]$$

The voltage doubler

Fig. 3. Power conversion efficiency and load voltage of the voltage doubler versus normalized load current for values of $V_P/n\phi_t$ equal to 1.5, 3, 6, and 12.

PCE: Power Conversion Efficiency

$$PCE = \frac{P_{out}}{P_{out} + P_{loss}} \cong \frac{1 - \frac{n\phi_t}{V_P} \ln\left[2\left(1 + I_L / I_S\right)\right]}{\left(1 + I_S / I_L\right)}$$

The voltage multiplier

N-stage voltage multiplier

Applications:

- Generation of voltages higher than the supply voltage, for EEPROMs, flash memories
- Energy harvesting for RFID tag chips, for example

Low-voltage I-V characteristic of a diode-connected zero-VT transistor.

AC/DC converter in 130 nm CMOS technology

24-stage rectifier

ULTRA-LOW-VOLTAGE (ULV) IC DESIGN: DESIGNING FOR VDD BELOW kT/q

Chapter 4 Ultra-Low-Voltage (ULV) oscillators

An important application of ULV oscillators

TEG – thermoelectric generator

OSC – oscillator

Cross-coupled LC oscillator

Criterion for oscillation (Barkhausen)

 $\phi = 0 \& V_{out}/V_{in} = -1$

What's the minimum V_{DD} for oscillation?

7-stage ring oscillator

Zero-VT W/L = 150 μm / 0.48 μm

	Calculated	Sch. Sim.	Poslayout	Exp.
VDD,min	32.6 mV	37 mV	40 mV	53 mV
frequency	1.07 GHz	730 MHz	560 MHz	560 MHz
ICEC	S 2014			52

Introduce voltage gain from drain to gate **Questions:**

1. How to reduce $V_{DD,min}$?

2. How to increase the V_{DD} -limited voltage swing?

Change topology, e.g., take advantage of CG gain

ESCO: small-signal model - 1

ESCO: small-signal model - 2

Second-order small-signal model of the ES Colpitts oscillator.

ESCO: start-up condition

$$g_{ms} > \left(1 + \frac{C_2}{C_1}\right)g_{md} + \frac{C_1}{C_2}G_2 + \left(2 + \frac{C_1}{C_2} + \frac{C_2}{C_1}\right)G_1$$

Optimum value of capacitors to minimize g_{ms} (for the conventional Colpitts $g_{md} = G_2 = 0$!)

For ideal inductors (and capacitors) $G_1 = G_2 = 0$

$$V_{DD \,\text{lim}} = \frac{kT}{q} \ln\left(1 + \frac{C_2}{C_1}\right)$$

Colpitts oscillator: first prototype

Powered by a thermoelectric generator

thermoelectric generator

24 // NMOS Zero-VT (ALD 1108) VT=59 mV, IS=11.2 uA

Colpitts oscillator: second prototype

Vdd < 20 mV

Second prototype: experimental results

V_{DD,min} x C2/C1

ICECS 2014

V_{D,PP} [mV]

ESCO designed for operation at 800 MHz

Micrograph of the ESCO built in 130 nm technology

Spectral diagram of the ESCO (V_{DD} = 86 mV)

Enhanced swing IRO (ESRO)-1

Enhanced swing IRO (ESRO)-2

Stage 2

Fig. 13. Picture showing the discrete prototype of the enhanced swing inductive-load oscillator and test equipment.

TABLE I

EXPERIMENTAL RESULTS FOR THE OSCILLATION FREQUENCY AND MINIMUM SUPPLY VOLTAGE OF THE OSCILLATOR TOPOLOGIES

Topology	Theoretical <i>V_{dd}</i> (min) *	IC prototype 130nm CMOS		Discrete prototype	
		V_{dd} (min)	f_{osc}	V _{dd} (min)	fosc
ILRO	$\phi_t \ln(1+n)$	53 mV	550 MHz	50 mV	11 MHz
ESILRO	$\phi_l \ln \left(1 + n \frac{L_1}{L_1 + L_2}\right)$	30 mV*	400 MHz	3.5 mV	1.1 MHz
ESCO	$\phi_t \ln \left(1 + \frac{C_2/C_1}{1 + L_1/L_2}\right)$	86 mV	700 MHz	15 mV	108 kHz

* For lossless passive devices and operation of MOSFETs in weak inversion
 + Post-layout simulation

ILRO, ESILRO, and ESCO refer to inductive-load ring, enhanced swing inductive-load ring, and enhanced swing Colpitts oscillators, respectively. Values of components:

$$\begin{split} &\text{ILRO} - \text{IC prototype} - \text{L} = 100 \text{ nH}, \text{Q} = 8. \\ &\text{ILRO} - \text{discrete prototype} - \text{L} = 4.6 \text{ uH}, \text{Q} = 50. \\ &\text{ESILRO} - \text{IC prototype} - \text{L}_1 = 20 \text{ nH}, \text{Q}_1 = 9; \text{L}_1 = 80 \text{ nH}, \\ &\text{Q}_2 = 8. \\ &\text{ESILRO} - \text{discrete prototype} - \text{L}_1 = 4.6 \text{ uH}, \text{Q}_1 = 55, \\ &\text{L}_2 = 1.2 \text{ mH}, \text{Q}_2 = 60. \\ &\text{ESCO} - \text{IC prototype} - \text{L}_1 = 13.6 \text{ nH}, \text{Q}_1 = 13.9, \text{L}_2 = 24.2 \text{ nH}, \\ &\text{Q}_2 = 13.3, \text{C}_1 = 6 \text{ pF}, \text{C}_2 = 3.5 \text{ pF}. \\ &\text{ESCO} - \text{discrete prototype} - \text{L}_1 = \text{L}_2 = 9.8 \text{ mH}, \text{Q}_1 = \text{Q}_2 = 80, \\ &\text{C}_1 = 1.54 \text{ nF}, \text{C}_2 = 0.44 \text{ nF}. \end{split}$$

64

Step-up converter-1

11-stage Dickson charge pump

Zero-VT transistor as a diode $W/L=4.2\mu m/0.42\mu m$ $V_T=76.5 mV$ Isat = 500 nA

2-stage ESRO

Zero-VT transistor $W/L=500\mu m/0.42\mu m$ $V_T=63 mV$ Integrated inductors $L_1=18.8 nH, L_2=66 nH$ $Q \approx 8$

Step-up converter-2

Experimental results

Start-upat $V_{out} = 1 V$ $V_{DD,min} = 73 \text{ mV}$ $I_L = 1 uA$ $V_{DD} = 86 \text{ mV}$

References

- E. Vittoz, "Weak inversion for ultimate low-power logic", in Low-Power Electronics Design, CRC Press, 2005.
- Márcio Cherem Schneider and Carlos Galup-Montoro, CMOS Analog Design Using All-Region MOSFET Modeling, Cambridge University Press, 2010.
- A. J. Cardoso, L. G. de Carli, C. Galup-Montoro, and M. C. Schneider, "Analysis of the rectifier circuit valid down to its low-voltage limit", *IEEE Transactions on Circuits and Systems I: Regular Papers*, Jan. 2012.
- Y. Ramadass, "Energy harvesters and energy processing circuits," ISSCC, San Francisco, Feb. 2013.
- M. B. Machado, M. C. Schneider, and C. Galup-Montoro, "On the minimum supply voltage for MOSFET oscillators", *IEEE Transactions on Circuits and Systems I: Regular Papers*, Feb 2014.
- L. A. P. Malek et al., Optimized Design of the CMOS Schmitt Trigger for Ultra Low Voltage Operation, *Iberchip*, Santiago de Chile, 2014.
- M. B. Machado, M. C. Schneider, M. Sawan and C. Galup-Montoro, "Fully-Integrated 86 mV – 1V Step-up Converter for Energy Harvesting Applications", *SBCCI*, Aracaju, Brazil, 2014